
A Genetic Algorithm for Large Graph Partitioning Problem
Xuan-Tung Nguyen
 Software Engineering

 Hanoi University of Science and
Technology

 Ha Noi, Vietnam
 tungxbk@gmail.com

Phuong-Nam Cao
 Software Engineering

 Hanoi University of Science and
Technology

 Ha Noi, Vietnam
 nam.cp170219@sis.hust.edu.vn

Van-Quyet Nguyen
 Information Technology

 Hung Yen University Technology
and Education

 Hung Yen, Vietnam
 quyetict@utehy.edu.vn

Kyungbaek Kim
 Electronics and Computer Engineering

 Chonnam National University
 Gwangju, Korea

 kyungbaekkim@jnu.ac.kr

Quyet-Thang Huynh†
 Software Engineering

 Hanoi University of Science and Technology
 Ha Noi, Vietnam

 thanghq@soict.hust.edu.vn

ABSTRACT
This paper considers the problem of partitioning large graphs. We
propose a genetic algorithm to distribute large-scale graphs for
parallel computations including individual representation, fitness
function, and genetic operators. We first propose individual
representation with the ability to change the number of clusters of
the graph as well as the ability to flexibly change the cluster of each
node. We then increase the diversity of the population by a random
hybrid algorithm. Finally, we optimize the solution with the
heuristic hybrid and the heuristic mutation algorithms. To validate
our approach, we test the proposed algorithm and compare the
results with other algorithms such as Greedy algorithm and Bulk
Swap algorithm on both synthetic and real-world datasets.
Experimental results show that our algorithm outperforms other
ones in the aspect of the number of cross edges reduction among
graph partitions.

CCS CONCEPTS
• Computing methodologies→ Heuristic • Applied computing→
Graph Partition;

KEYWORDS
Graph Partitioning, Large-scale Graph, Parallel Computation,
Genetic Algorithm

ACM Reference format:

Xuan-Tung	Nguyen,	Phuong-Nam	Cao,	Van-Quyet	Nguyen,	Kyungbaek	
Kim	 and	 Quyet-Thang	 Huynh.	 2019.	 A	 Genetic	 Algorithm	 for	 Large	

Graph	 Partitioning	 Problem.	 In	 SoICT	 ’19:	 The	 Tenth	 International	
Symposium	on	Information	and	Communication	Technology,	December	
4–6,	2019,	Hanoi	–	Ha	Long	Bay,	Viet	Nam.	ACM,	New	York,	NY,	USA,	6	
pages.	https://doi.org/10.1145/3368926.3369724	

1 Introduction
Nowadays, petabytes of data can be modeled as a graph with

nodes and edges are generated and processed. For example, data of
a social network can be modeled as a large graph with users as
nodes, and relationships as edges; likewise, websites as nodes,
hyperlink as edges. Such data are large and complex. They have a
lot of real calculation problems related to large graphs which takes
a number of vertices and edges, such as web graphs and social
networks. The sizes of the graphs, in some cases, are billions of
vertices, trillions of edges which leads to challenges to processing
performance [1]. Therefore, these graphs are needed to process and
storage with multi-pieces and each piece has a small number of
cross edges between different pieces [2]. It is also the reason for
defining the large graph partitioning problem (LGPP).

LGPP problem is defined as the following: given an
undirected graph G (V, E) such that V is a set of nodes and E is a
set of edges of the graph G. The goal of the problem is to divide the
graph’s vertices into several sets such that the number of cross
edges between different sets is small (called sum_weight_cutedges).
By this way, we can put each set into a processor and these
processors can run side by side. The more processors, the higher
the speed and performance.

Besides, the problem of graph partitioning is a NP-complete
problem [3], so all known algorithms for creating partitions merely
return approximations for the optimal solution. Although, in this
theory, the achievement of good results is limited, over the years,
there are many partition algorithms developed to achieve good
results in a short time. The fundamental issues which must be
addressed in every parallel application are the workload
distribution, data distribution, and computation on a processor. The
optimal distribution minimizes the overall running time, usually by

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SoICT 2019, December 4–6, 2019, Hanoi - Ha Long Bay, Viet Nam
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7245-9/19/12...$15.00
https://doi.org/10.1145/3368926.3369724
† Corresponding Author

419

SoICT ’19, December 4–6, 2019, Hanoi – Ha Long Bay, Viet Nam Xuan-Tung Nguyen et al.

ensuring that each processor has the same amount of work, and
minimizes parallel costs due to distribution caused by the
interaction between processors (defined by the cross edges between
two processors).

In this paper, we propose a genetic algorithm (GA) to
distribute large-scale graphs for parallel computations including
individual representation, fitness function, and genetic operators.
We divide the graph G with the number of edges and vertices large
enough into k sets so that the total number of cross edges is
minimal. To do this, we first propose individual representation with
the ability to change the number of clusters of the graph as well as
the ability to flexibly change the cluster of each node. We then
increase the diversity of the population by a random hybrid
algorithm. Finally, we optimize the solution with the heuristic
hybrid and the heuristic mutation algorithms. We evaluate the
proposed algorithm and compare the results with other algorithms
such as Greedy algorithm (DG) and Bulk Swap algorithm (BS) on
both synthetic and real-world datasets. Experimental results show
that our algorithm outperforms other ones in the aspect of the
number of cross edges reduction among graph partitions.

We organize the paper as follows. In Section 2, we first
introduce the graph partitioning algorithms that existed earlier and
then evaluated these algorithms, eventually introducing (GA). We
present the graph partitioning algorithm based on a genetic
algorithm in Section 3. The results of GA, DG, BS made to evaluate
the performance of our algorithms are presented in Section 4. After
reviewing the results, we draw conclusions in Section 5.

2 Related Works
In recent years, more and more graph data are generated from

different sources, such as social networks and websites [4]. Such
data can be formed as large graphs, which requires optimization
techniques for storing and processing these data [5]. There have
been many researches focusing on large graph data partitioning
problems.

Charbel Farhat [6] et al. studied and proposed the greedy
algorithm, which is quite effective in theory. If the data sets tend to
be fragmented, then selecting the vertices and then browsing in-
depth (width) will produce good results. For example, the DG
algorithm selects the next vertex in a cluster with the optimal
function is the minimalism of the cutting edge and the connecting
edge in the region, but the problem is that the original vertex is
selected for approval. has a great impact on the results, especially
when it is necessary to divide the set of data into multiple clusters,
must select multiple times.

George Karypis and Vipin Kumar propose the greedy graph
growing algorithm [7] (GGP), which is a heuristic algorithm for
greedy graph based structure fragmentation. The algorithm gives k-
loops, each loop selects an unobtrusive free peak and generates a
partition around it according to the depth search algorithm (DFS)
until n / k vertices are included in that partition.

Chris Walshaw proposed Iterated Multilevel Algorithms [12].
The main idea of Iterated Multilevel Algorithms is to device the

graph into 2 parts and balance them. The algorithm will repeat and
stop when the graph is divided into k-wav given. But, this algorithm
will be locally optimized. Therefore, Peter Sanders and Christian
Schulz propose Global Search [11] for graph partition to solve
locally optimized in [12]. This algorithm using two recursive calls
using different random seeds during contraction and local search
on each level, and they are very effective. However, the algorithms
are very costly which makes them not scale on large graphs well.

In 2016, Tefeng Chen and Bo Li propose Bulk Swap (BW)
algorithm [8], the advantage of this algorithm is that it is possible
to quickly reduce the number of cutting edges (or the total weight
of cutting edges) between two data clusters, combining simulated
annealing technique for escaping local optimizations. But it only
cares for two data clusters to be selected for optimization, maybe
the next optimal time will cancel the results that have just been
done. If a region consists of a small number of vertices, the BS
algorithm is almost useless.

The large graph data has a clear data structure with vertices
and edges but it still has randomness so this paper proposes a
random algorithm that is GA. Although partitioning is a problem of
NP-complete, GA algorithm can check a large number of cases, in
addition to the crossover, it is possible to find the best generation
between two parents, giving results tend to be better while still
having randomness with a mutation to avoid local optimization.
The shortcoming is that it needs a long time to execute.

3 Proposed Algorithm
In this section, we propose GALGPP algorithm to solve the

problem. As mentioned in Section 1, this algorithm is a GA, which
is a heuristic algorithm and its improvements applied in k-means
graph partitioning problem.

Besides, we use a greedy algorithm [3] (DG algorithm) to
mutate individual with purpose find the best result.

3.1 The Greedy Algorithm (DG)
The DG selects random k nodes in graph G and sets the index

of k partitions for k nodes. Next, the remaining free vertices are
divided into pieces by heuristic algorithms such as 3.2.1, 3.2.2,
3.2.3.

The total weight increases of a vertex when partitioning for
that vertex (a common function in a greedy structure) is defined:

𝑡"	(𝑣, 𝑝() = ∑ 𝑔-(𝑣, 𝑝)-.-((1)

This is the number of sheer edges that increase when assigning
vertex v to partition p' of partition p. This function is important
because the selected vertex v is free and when it is assigned to p',
the cut edges will be obtained and counted to the total cutting edge
of the partition. The right side is the sum of the edges from v to the
other partitions p’.

The pseudo-code below represents our idea:

Algorithm 1: Greedy Algorithm

420

A Genetic Algorithm for Large Graph Partitioning Problem SoICT ’19, December 4–6, 2019, Hanoi – Ha Long Bay, Viet Nam

Input: Graph G = (V, E), k
Output: k partitions

0 Program Greedy Algorithm
1 Begin
2 P←{𝑃0,…,𝑃123 }
3 V’←V
4 for p∈[0,k−1] do
5 u←select_random_node	∈	V'
6 𝑝"←{u}
7 V'←V'\{u}
8 end
8 p←0
9 while |V'|>0 do
10 b←greedyfunction (V′, P,p,G)
11 𝑝"←{u}
12 V'←V'\{b}
13 p←(p+1) mod k
14 return P;
15 end

3.2 The Greedy Function
3.2.1 Graph Growing Partitioning Algorithm

The algorithm produces k loops, each loop chooses a random
free vertex and generates a partition around it according to the depth
search algorithm (DFS) until the top n/k vertices are put into that
partition.

3.2.2 Greedy Graph Growing Partitioning Algorithm

This algorithm selects vertices to produce the smallest number
of edges, and if more than one vertex satisfies, one of them is
randomly chosen. Besides, the vertices are partitioned in the
circular order of the pieces, while the GGP grows in size from one
piece to the maximum in a loop.

The pseudocode below represents our idea:

Algorithm 2: Greedy Graph Growing Partitioning Algorithm
Input: V’ϵV &V’ ∉ 𝑃{1. . 𝑘} , P (current partition), P’(next
partition), Graph G = (V, E)
Output: node ϵ V’

0 Program GGGP Algorithm
1 Begin
2 𝑚 ← 𝑚𝑖𝑛?∈@(𝑡-(𝑣, 𝑝))	
3 𝐶 ← {𝑣 ∈ 𝑉(|𝑡-(𝑣, 𝑝) = 𝑚}
4 node = select_random(C)
5 return node
6 end
3.2.3 Min-max Greedy (MMG) Algorithm

Battiti and Bertossi [13] found that the GGGP's greedy
function produces many cases where the increased cut edge weights
are the same for real regions. The MMG algorithm mimics the
GGGP but adds an improvement to solve the above problem:
among the edges with the smallest rising edge weight, selecting the

vertex makes the edge weight in one piece increase the maximum
or the maximum chemistry 𝑔"(𝑣, 𝑝) with p is the fragment that v is
partitioned into.

The pseudocode below represents our idea:

Algorithm 3: MMG Algorithm

Input: V’ϵV &V’ ∉ 𝑃{1. . 𝑘} , P (current partition), P’ (next
partition), Graph G = (V, E)

Output: node ϵ V’

0 Program MMG Algorithm
1 Begin
2 𝑚 ← 𝑚𝑖𝑛?∈@(𝑡-(𝑣, 𝑝))	
3 𝐶 ← {𝑣 ∈ 𝑉(|𝑡-(𝑣, 𝑝) = 𝑚}
5 𝑚 ← 𝑚𝑎𝑥?∈F(𝑔-(𝑣, 𝑝))
6 𝐶 ← {𝑣 ∈ 𝐶|𝑔-(𝑣, 𝑝) = 𝑚}
4 node = select_random(C)
5 return node
6 end

3.3 The Genetic Algorithm (GA)
In GA, a population of candidate solutions (called individuals,

we propose the structure of the individual as shown in the
presentation 3.4.) to an optimization problem is evolved toward
better solutions. The individuals are randomly generated, then they
are hybridized and mutated. Finally, we select individuals for the
next life cycle. The algorithm ends when the result is focused at one
point.

3.4 Individual Representation
In our algorithm, each individual, which is a solution of the

problem has a chromosome, this is represented by a string of
numbers from 1 to 𝑘 and the length of it is the number of vertices
in the graph. When vertex i is assigned to partition 𝑗, unit i-th in the
string is set to number 𝑗. The chromosome generated in this way
can store one form of a distributed graph in which if the unit i-th in
the string is 𝑗, the vertex 𝑖 in the graph is assigned to partition 𝑗.

We initial assign every vertex to a partition uniformly at
random to form 𝑘 partitions.

The evolution usually starts from a population of randomly
generated individuals, and it is an iterative process, with the
population in each iteration called a generation. In each generation,
the fitness of every individual in the population is evaluated; the
fitness is usually the value of the objective function in the
optimization problem being solved. The more fit individuals are
stochastically selected from the current population, and each
individual's genome is modified (recombined and possibly
randomly mutated) to form a new generation. The new generation
of candidate solutions is then used in the next iteration of the
algorithm. Typically, the algorithm terminates when either a
maximum number of generations has been produced, or a
satisfactory fitness level has been reached for the population.

421

SoICT ’19, December 4–6, 2019, Hanoi – Ha Long Bay, Viet Nam Xuan-Tung Nguyen et al.

To initialize an individual, each gene is assigned to any
partition in the required k-way partition.

The pseudocode below represents our idea:

Algorithm 4: Init individual

Input: Graph G = (V, E), k

Output: individual

0 Program Inialization GALGPP
1 Begin
2 load_data_for_individual
2 for i from 0 to length_of_gens
3 partition_index = random(k)
4 gens[i].partion_index = partition_index
5 end

3.5 Fitness Function
The fitness function of one population is measured by:

	3
I
∑ ∑ 𝑚JKK∈LMKN
O
JP3 			 	 	 (2)

where 𝑎𝑑𝑗J is the set of adjacent vertices of vertex 𝑖 and 𝑚JK is the
weight of the edge connecting vertex 𝑖 and vertex 𝑗.

3.6 Genetic Operators
3.6.1 Crossover with a heuristic selection

From 2 individuals we called them as parents. We select n first
gens. Next, we find cutting point i, so that the new individual has i
gene belonging to parent 1, n-i gene belongs to parent 2 and the
sum_weight_cutedges (the number of cross edges between different
sets) is smaller than that of the parents. By the way, the number of
nodes of the input graph can be large, so we decide to choose max
n_positions random positions and process them. The proportion of
crossover implementing in our population is rate_crossover
percent.

The pseudocode below represents our idea:

Algorithm 5: Crossover with heuristic select

Input: 2 parents

Output: new individual

0 Program Crossover GALGPP
1 Begin
2 Initialization
3 num_node=min(number_of_nodes, n_positions)
4 create new_gen
5 min = Infinity
6 best_state = 0
7 for mask from 0 to num_node-1 do
8 new_gen[:mask] = gen_1[:mask]
9 new_gen[mask+1:] = gen_gen2[mask+1:]

10 cutsize = sum_weight_cutedges in new_gen
11 if cutsize < min then
12 best_state = mask
13 min = cutsize
14 fi
15 end
16 new_gen[:best_state] = gen_1[:best_state]
17 new_gen[best_state+1:] = gen_2[best_state+1:]

3.6.2 Crossover with random select

From 2 individuals we called them as parents (parent1 and
parent2). We select random positions of gen in parent1 and call is
index_choose (because the index of gen in individuals is the same).
Next to, we select random gen of parent1 and parent2 at
index_choose. As session 3.4.1, we decided to choose max 22
random positions and process them. The proportion of crossover
implementing in our population is 40 percent.

The pseudocode below represents our idea:

Algorithm 6: Crossover with random select

Input: 2 parents

Output: new individual

0 Program Crossover GALGPP
1 Begin
2 Initialization
3 Num_node is number of nodes
4 new_gen = clone(parent1)
5 number_select = max (length_of_gen, 22)
6 for i from 0 to number_select
7 index_current = random(length_of_gen)
8 index_of_partition=random

(parent1.partition_index,
parent2.partition_index)

9 new_gen[index_current].partition_index =
index_of_partition
16 end

3.6.3 Mutation with DG algorithm select

We use a custom mutation method by choosing at least 3
positions and the max number of positions up to ORSTUV_OXMU

30
.

Depend on current population state, we choose new partition for
that node by calculating the total cost of cut edges and internal
edges follow DG as we mentioned at Section 3.1 and 3.2 to get the
best result. This mean find new partition such as weight of edges in
new partition include 𝑝	 Y𝑔-	(𝑣, 𝑝()Z subtracts the weight of cut
edges 𝑡-	(𝑣, 𝑝′) is minimum. This optimization is formulated by:

min𝑔-(𝑣, 𝑝() − 𝑡-(𝑣, 𝑝′) (3)

The proportion of mutation implementing in our population is 30
percent. The pseudocode below represents our idea:

Algorithm 7: Mutation

422

A Genetic Algorithm for Large Graph Partitioning Problem SoICT ’19, December 4–6, 2019, Hanoi – Ha Long Bay, Viet Nam

Input: 1 parent

Output: new individual

0 Program Mutate GALGPP
1 Begin
2 Initialization
3 choosed_gen is a gen chosen for mutation
4 num_node is the number of nodes
5 create new_gen
6 new_gen ← choosed_gen
7 num ← max of 3 and num_node/10
8 V ← include random num nodes
9 for i is choosed nodes in V do
10 Choose cluster for i such as weight of

edges include i in new the cluster
subtracts weight of edges in a different
cluster

11 new_gen[i] = new cluster
12 end

4 Experimental Evaluation

4.1 Datasets
In order to test the performance of our algorithm and compare

with other algorithms, we used 4 datasets with different sizes.

The first dataset (Synthetic 1) is a small graph that is generated
randomly with 9 nodes and 40 edges. The target is to divide graph
into two partitions. The main purpose of this dataset is comparing
the result of our GA algorithm implement with backtracking
algorithm in a limited time.

The second dataset (Synthetic 2) is a larger random graph with
999 nodes and 2430 edges. The target of this data set is to divide
the graph into 428 partitions. It means each partition will have from
2 to 3 nodes.

The third dataset is a real-world graph representing a social
circle provided by Facebook [9]. It is a social network with 4039
nodes and 88234 edges. We divide into 10 networks. By default,
we set the cost of an edge is 1.

The fourth dataset (Arxiv GR-QC) is from Standford called
General Relativity and Quantum Cosmology collaboration network
[10]. Arxiv GR-QC (General Relativity and Quantum Cosmology)
collaboration network is from the e-print arXiv and covers
scientific collaborations between authors' papers submitted to
General Relativity and Quantum Cosmology category. If an author
i co-authored a paper with author j, the graph contains an undirected
edge from i to j. If the paper is co-authored by k authors this
generates a completely connected (sub)graph on k nodes.

4.2 Evaluation Settings
In our algorithm, the population size is 50. The

individuals are initialized randomly. The crossover rate in

each generation is 80% and mutation rate is 30%. Our system
is run 20 times for each problem instance. The programs
were run on a machine with Intel CoreI5 2.80Ghz, RAM 8G
DDR3, SSD 240G and were installed by C++ language.

4.2 Experimental Results
Table 1 shows the best costs found by GALGPP and

other algorithms on four datasets. These problem instances
could be solved by GALGPP with the result is the best in 4
algorithms.

Table 1: Comparison the best result of GALGPP algorithm
with DG algorithm, GGP algorithm, and BS algorithm

Data DG GGP BS GALGPP

Synthetic 1 1401 1078 307 51
Synthetic 2 19344 228679 116115 65671
Facebook 20404 86534 79230 7635
Arxiv GR-

QC
1395426 170729

2
722613 475404

From the results in Table 1, we found that the results of the
GALGPP are almost always superior to the others.

Figure 1: Comparison the best result of GALGPP algorithm
with DG algorithm, GGP algorithm and BS algorithm on

Synthetic 1.

From the results showing on four figures we found that with
dataset random (Synthetic 2), the DG algorithm got the best result
in 4 algorithms, but this algorithm has the worst result with dataset
random Synthetic 1. But for real-world datasets (Facebook, Arxiv
GR-QC), the GALGPP algorithm has the best result.

0

200

400

600

800

1000

1200

1400

1600

DG GGP BS GALGPP

Th
e

Co
st

 o
f C

ut
tin

g
Ed

ge
s

423

SoICT ’19, December 4–6, 2019, Hanoi – Ha Long Bay, Viet Nam Xuan-Tung Nguyen et al.

Figure 2: Comparison the best result of GALGPP algorithm
with DG algorithm, GGP algorithm and BS algorithm on

Synthetic 2.

Figure 3: Comparison the best result of GALGPP algorithm
with DG algorithm, GGP algorithm and BS algorithm on

Facebook.

Figure 4: Comparison the best result of GALGPP algorithm
with DG algorithm, GGP algorithm and BS algorithm on

Arxiv GR-QC.

5 Conclusion
In this paper, we proposed a genetic algorithm for solving the

Large Graph Partition Problem called GALGPP. We experimented
on four datasets. Experimental results indicated that our algorithm
is effective about costs. In the future, we are defining this problem
with multi-objective and solving it. Besides, we will study solving
the problem for big graphs which has billion of nodes and edges by
using the proposed approaches as well as different ones.

ACKNOWLEDGMENTS
This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded
by the Ministry of Science, ICT & Future Planning (NRF-
2017R1A2B4012559).

REFERENCES
[1] Nguyen-Van, Q., Tung, L.D. and Hu, Z., 2013, December. Minimizing

data transfers for regular reachability queries on distributed graphs.
In Proceedings of the Fourth Symposium on Information and
Communication Technology (pp. 325-334). ACM.

[2] Rahimian, Fatemeh, et al. "Ja-be-ja: A distributed algorithm for
balanced graph partitioning." 2013 IEEE 7th International Conference
on Self-Adaptive and Self-Organizing Systems. IEEE, 2013.

[3] Garey, Michael R., David S. Johnson, and Larry Stockmeyer. ”Some
simplified NP-complete problems.” Proceedings of the sixth annual
ACM symposium on Theory of computing. ACM, 1974

[4] Nguyen, V.Q. and Kim, K., 2017, December. Estimating the evaluation
cost of regular path queries on large graphs. In Proceedings of the
Eighth International Symposium on Information and Communication
Technology (pp. 92-99). ACM.

[5] V.-Q. Nguyen, Q.-T. Huynh, and K. Kim, “Estimating searching cost
of regular path queries on large graphs by exploiting unit-subqueries,”
Journal of Heuristics, pp. 1–21, Nov 2018. [Online]. Available: https:
//doi.org/10.1007/s10732-018-9402-0

[6] Charbel Farhat. A simple and efficient automatic FEM domain
decomposer. Computers and Structures, 28(5):579–602, 1988

[7] George Karypis and Vipin Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. to appear in SIAM Journal on
Scientific Computing.

[8] Chen, Tefeng, and Bo Li. "A distributed graph partitioning algorithm
for processing large graphs." 2016 IEEE Symposium on Service-
Oriented System Engineering (SOSE). IEEE, 2016.

[9] J. McAuley and J. Leskovec, 'Social circles: Facebook', NIPS 2012,
[Online] Available: http://snap.stanford.edu/data/ego-Facebook.html

[10] J. Leskovec, J. Kleinberg and C. Faloutsosm, 'General Relativity and
Quantum Cosmology collaboration network', ACM TKDD 2007,
[Online] Available: https://snap.stanford.edu/data/ca-GrQc.html

[11] Sanders, Peter, and Christian Schulz. "Engineering multilevel graph
partitioning algorithms." European Symposium on Algorithms.
Springer, Berlin, Heidelberg, 2011.

[12] Walshaw, Chris. "Multilevel refinement for combinatorial
optimisation problems." Annals of Operations Research 131.1-4
(2004): 325-372.

[13] Battiti, Roberto, and Alan A. Bertossi. "Greedy, prohibition, and
reactive heuristics for graph partitioning." IEEE Transactions on
Computers 48.4 (1999): 361-385.

0

50000

100000

150000

200000

250000

DG GGP BS GALGPP

Th
e

Co
st

 o
f C

ut
tin

g
Ed

ge
s

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

DG GGP BS GALGPP

Th
e

Co
st

 o
f C

ut
tin

g
Ed

ge
s

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000

DG GGP BS GALGPP

Th
e

Co
st

 o
f C

ut
tin

g
Ed

ge
s

424

