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ABSTRACT 
This paper considers the problem of partitioning large graphs. We 
propose a genetic algorithm to distribute large-scale graphs for 
parallel computations including individual representation, fitness 
function, and genetic operators. We first propose individual 
representation with the ability to change the number of clusters of 
the graph as well as the ability to flexibly change the cluster of each 
node. We then increase the diversity of the population by a random 
hybrid algorithm. Finally, we optimize the solution with the 
heuristic hybrid and the heuristic mutation algorithms. To validate 
our approach, we test the proposed algorithm and compare the 
results with other algorithms such as Greedy algorithm and Bulk 
Swap algorithm on both synthetic and real-world datasets. 
Experimental results show that our algorithm outperforms other 
ones in the aspect of the number of cross edges reduction among 
graph partitions. 
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1 Introduction 
Nowadays, petabytes of data can be modeled as a graph with 

nodes and edges are generated and processed. For example, data of 
a social network can be modeled as a large graph with users as 
nodes, and relationships as edges; likewise, websites as nodes, 
hyperlink as edges. Such data are large and complex. They have a 
lot of real calculation problems related to large graphs which takes 
a number of vertices and edges, such as web graphs and social 
networks. The sizes of the graphs, in some cases, are billions of 
vertices, trillions of edges which leads to challenges to processing 
performance [1]. Therefore, these graphs are needed to process and 
storage with multi-pieces and each piece has a small number of 
cross edges between different pieces [2]. It is also the reason for 
defining the large graph partitioning problem (LGPP). 

LGPP problem is defined as the following: given an 
undirected graph G (V, E) such that V is a set of nodes and E is a 
set of edges of the graph G. The goal of the problem is to divide the 
graph’s vertices into several sets such that the number of cross 
edges between different sets is small (called sum_weight_cutedges). 
By this way, we can put each set into a processor and these 
processors can run side by side. The more processors, the higher 
the speed and performance. 

Besides, the problem of graph partitioning is a NP-complete 
problem [3], so all known algorithms for creating partitions merely 
return approximations for the optimal solution. Although, in this 
theory, the achievement of good results is limited, over the years, 
there are many partition algorithms developed to achieve good 
results in a short time. The fundamental issues which must be 
addressed in every parallel application are the workload 
distribution, data distribution, and computation on a processor. The 
optimal distribution minimizes the overall running time, usually by 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 
SoICT 2019, December 4–6, 2019, Hanoi - Ha Long Bay, Viet Nam 
© 2019 Association for Computing Machinery. 
ACM ISBN 978-1-4503-7245-9/19/12...$15.00 
https://doi.org/10.1145/3368926.3369724 
† Corresponding Author  

419



SoICT ’19, December 4–6, 2019, Hanoi – Ha Long Bay, Viet Nam Xuan-Tung Nguyen et al. 
 

 
 

ensuring that each processor has the same amount of work, and 
minimizes parallel costs due to distribution caused by the 
interaction between processors (defined by the cross edges between 
two processors). 

In this paper, we propose a genetic algorithm (GA) to 
distribute large-scale graphs for parallel computations including 
individual representation, fitness function, and genetic operators. 
We divide the graph G with the number of edges and vertices large 
enough into k sets so that the total number of cross edges is 
minimal. To do this, we first propose individual representation with 
the ability to change the number of clusters of the graph as well as 
the ability to flexibly change the cluster of each node. We then 
increase the diversity of the population by a random hybrid 
algorithm. Finally, we optimize the solution with the heuristic 
hybrid and the heuristic mutation algorithms. We evaluate the 
proposed algorithm and compare the results with other algorithms 
such as Greedy algorithm (DG) and Bulk Swap algorithm (BS) on 
both synthetic and real-world datasets. Experimental results show 
that our algorithm outperforms other ones in the aspect of the 
number of cross edges reduction among graph partitions. 

We organize the paper as follows. In Section 2, we first 
introduce the graph partitioning algorithms that existed earlier and 
then evaluated these algorithms, eventually introducing (GA). We 
present the graph partitioning algorithm based on a genetic 
algorithm in Section 3. The results of GA, DG, BS made to evaluate 
the performance of our algorithms are presented in Section 4. After 
reviewing the results, we draw conclusions in Section 5. 

2 Related Works 
In recent years, more and more graph data are generated from 

different sources, such as social networks and websites [4]. Such 
data can be formed as large graphs, which requires optimization 
techniques for storing and processing these data [5]. There have 
been many researches focusing on large graph data partitioning 
problems. 

Charbel Farhat [6] et al. studied and proposed the greedy 
algorithm, which is quite effective in theory. If the data sets tend to 
be fragmented, then selecting the vertices and then browsing in-
depth (width) will produce good results. For example, the DG 
algorithm selects the next vertex in a cluster with the optimal 
function is the minimalism of the cutting edge and the connecting 
edge in the region, but the problem is that the original vertex is 
selected for approval. has a great impact on the results, especially 
when it is necessary to divide the set of data into multiple clusters, 
must select multiple times. 

George Karypis and Vipin Kumar propose the greedy graph 
growing algorithm [7] (GGP), which is a heuristic algorithm for 
greedy graph based structure fragmentation. The algorithm gives k-
loops, each loop selects an unobtrusive free peak and generates a 
partition around it according to the depth search algorithm (DFS) 
until n / k vertices are included in that partition. 

Chris Walshaw proposed Iterated Multilevel Algorithms [12]. 
The main idea of Iterated Multilevel Algorithms is to device the 

graph into 2 parts and balance them. The algorithm will repeat and 
stop when the graph is divided into k-wav given. But, this algorithm 
will be locally optimized. Therefore, Peter Sanders and Christian 
Schulz propose Global Search [11] for graph partition to solve 
locally optimized in [12]. This algorithm using two recursive calls 
using different random seeds during contraction and local search 
on each level, and they are very effective. However, the algorithms 
are very costly which makes them not scale on large graphs well. 

In 2016, Tefeng Chen and Bo Li propose Bulk Swap (BW) 
algorithm [8], the advantage of this algorithm is that it is possible 
to quickly reduce the number of cutting edges (or the total weight 
of cutting edges) between two data clusters, combining simulated 
annealing technique for escaping local optimizations. But it only 
cares for two data clusters to be selected for optimization, maybe 
the next optimal time will cancel the results that have just been 
done. If a region consists of a small number of vertices, the BS 
algorithm is almost useless. 

The large graph data has a clear data structure with vertices 
and edges but it still has randomness so this paper proposes a 
random algorithm that is GA. Although partitioning is a problem of 
NP-complete, GA algorithm can check a large number of cases, in 
addition to the crossover, it is possible to find the best generation 
between two parents, giving results tend to be better while still 
having randomness with a mutation to avoid local optimization. 
The shortcoming is that it needs a long time to execute. 

3 Proposed Algorithm 
In this section, we propose GALGPP algorithm to solve the 

problem. As mentioned in Section 1, this algorithm is a GA, which 
is a heuristic algorithm and its improvements applied in k-means 
graph partitioning problem. 

Besides, we use a greedy algorithm [3] (DG algorithm) to 
mutate individual with purpose find the best result. 

3.1 The Greedy Algorithm (DG) 
The DG selects random k nodes in graph G and sets the index 

of k partitions for k nodes. Next, the remaining free vertices are 
divided into pieces by heuristic algorithms such as 3.2.1, 3.2.2, 
3.2.3. 

The total weight increases of a vertex when partitioning for 
that vertex (a common function in a greedy structure) is defined: 

𝑡"	(𝑣, 𝑝() = ∑ 𝑔-(𝑣, 𝑝)-.-(     (1) 

This is the number of sheer edges that increase when assigning 
vertex v to partition p' of partition p. This function is important 
because the selected vertex v is free and when it is assigned to p', 
the cut edges will be obtained and counted to the total cutting edge 
of the partition. The right side is the sum of the edges from v to the 
other partitions p’. 

The pseudo-code below represents our idea: 

Algorithm 1: Greedy Algorithm 
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Input: Graph G = (V, E), k 
Output: k partitions 

0 Program Greedy Algorithm 
1 Begin 
2  P←{𝑃0,…,𝑃123 } 
3  V’←V 
4  for p∈[0,k−1] do   
5      u←select_random_node	∈	V'    
6     𝑝"←{u} 
7         V'←V'\{u} 
8      end 
8      p←0 
9      while |V'|>0 do  
10       b←greedyfunction (V′, P,p,G)    
11       𝑝"←{u} 
12       V'←V'\{b}    
13       p←(p+1) mod k 
14     return P; 
15 end 

3.2 The Greedy Function 
3.2.1 Graph Growing Partitioning Algorithm 

The algorithm produces k loops, each loop chooses a random 
free vertex and generates a partition around it according to the depth 
search algorithm (DFS) until the top n/k vertices are put into that 
partition. 

3.2.2 Greedy Graph Growing Partitioning Algorithm 

This algorithm selects vertices to produce the smallest number 
of edges, and if more than one vertex satisfies, one of them is 
randomly chosen. Besides, the vertices are partitioned in the 
circular order of the pieces, while the GGP grows in size from one 
piece to the maximum in a loop. 

The pseudocode below represents our idea: 

Algorithm 2: Greedy Graph Growing Partitioning Algorithm 
Input: V’ϵV &V’ ∉ 𝑃{1. . 𝑘} , P (current partition), P’(next 
partition), Graph G = (V, E) 
Output: node ϵ V’ 

0 Program GGGP Algorithm 
1 Begin 
2   𝑚 ← 𝑚𝑖𝑛?∈@(𝑡-(𝑣, 𝑝))	 
3   𝐶 ← {𝑣 ∈ 𝑉(|𝑡-(𝑣, 𝑝) = 𝑚} 
4   node = select_random(C) 
5   return node 
6 end 
3.2.3 Min-max Greedy (MMG) Algorithm 

Battiti and Bertossi [13] found that the GGGP's greedy 
function produces many cases where the increased cut edge weights 
are the same for real regions. The MMG algorithm mimics the 
GGGP but adds an improvement to solve the above problem: 
among the edges with the smallest rising edge weight, selecting the 

vertex makes the edge weight in one piece increase the maximum 
or the maximum chemistry 𝑔"(𝑣, 𝑝) with p is the fragment that v is 
partitioned into. 

The pseudocode below represents our idea: 

Algorithm 3: MMG Algorithm 

Input: V’ϵV &V’ ∉ 𝑃{1. . 𝑘} , P (current partition), P’ (next 
partition), Graph G = (V, E) 

Output: node ϵ V’ 

0 Program MMG Algorithm 
1 Begin 
2   𝑚 ← 𝑚𝑖𝑛?∈@(𝑡-(𝑣, 𝑝))	 
3   𝐶 ← {𝑣 ∈ 𝑉(|𝑡-(𝑣, 𝑝) = 𝑚} 
5   𝑚 ← 𝑚𝑎𝑥?∈F(𝑔-(𝑣, 𝑝)) 
6   𝐶 ← {𝑣 ∈ 𝐶|𝑔-(𝑣, 𝑝) = 𝑚} 
4   node = select_random(C) 
5   return node 
6 end 

3.3 The Genetic Algorithm (GA) 
In GA, a population of candidate solutions (called individuals, 

we propose the structure of the individual as shown in the 
presentation 3.4.) to an optimization problem is evolved toward 
better solutions. The individuals are randomly generated, then they 
are hybridized and mutated. Finally, we select individuals for the 
next life cycle. The algorithm ends when the result is focused at one 
point. 

3.4 Individual Representation 
In our algorithm, each individual, which is a solution of the 

problem has a chromosome, this is represented by a string of 
numbers from 1 to 𝑘 and the length of it is the number of vertices 
in the graph. When vertex i is assigned to partition 𝑗, unit i-th in the 
string is set to number 𝑗. The chromosome generated in this way 
can store one form of a distributed graph in which if the unit i-th in 
the string is 𝑗, the vertex 𝑖 in the graph is assigned to partition 𝑗. 

We initial assign every vertex to a partition uniformly at 
random to form 𝑘 partitions.  

The evolution usually starts from a population of randomly 
generated individuals, and it is an iterative process, with the 
population in each iteration called a generation. In each generation, 
the fitness of every individual in the population is evaluated; the 
fitness is usually the value of the objective function in the 
optimization problem being solved. The more fit individuals are 
stochastically selected from the current population, and each 
individual's genome is modified (recombined and possibly 
randomly mutated) to form a new generation. The new generation 
of candidate solutions is then used in the next iteration of the 
algorithm. Typically, the algorithm terminates when either a 
maximum number of generations has been produced, or a 
satisfactory fitness level has been reached for the population. 
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To initialize an individual, each gene is assigned to any 
partition in the required k-way partition. 

The pseudocode below represents our idea: 

Algorithm 4: Init individual 

Input: Graph G = (V, E), k 

Output: individual 

0 Program Inialization GALGPP 
1 Begin 
2  load_data_for_individual 
2   for i from 0 to length_of_gens 
3   partition_index = random(k) 
4   gens[i].partion_index = partition_index 
5 end 

3.5 Fitness Function 
The fitness function of one population is measured by: 

	3
I
∑ ∑ 𝑚JKK∈LMKN
O
JP3 			 	 	 (2) 

where 𝑎𝑑𝑗J is the set of adjacent vertices of vertex 𝑖 and 𝑚JK is the 
weight of the edge connecting vertex 𝑖 and vertex 𝑗.  

3.6 Genetic Operators 
3.6.1 Crossover with a heuristic selection 

From 2 individuals we called them as parents. We select n first 
gens. Next, we find cutting point i, so that the new individual has i 
gene belonging to parent 1, n-i gene belongs to parent 2 and the 
sum_weight_cutedges (the number of cross edges between different 
sets) is smaller than that of the parents. By the way, the number of 
nodes of the input graph can be large, so we decide to choose max 
n_positions random positions and process them. The proportion of 
crossover implementing in our population is rate_crossover 
percent.  

The pseudocode below represents our idea: 

Algorithm 5: Crossover with heuristic select 

Input: 2 parents 

Output: new individual 

0 Program Crossover GALGPP 
1 Begin 
2  Initialization 
3  num_node=min(number_of_nodes, n_positions) 
4 create new_gen 
5 min = Infinity 
6 best_state = 0 
7 for mask from 0 to num_node-1 do 
8  new_gen[:mask] = gen_1[:mask]   
9  new_gen[mask+1:] = gen_gen2[mask+1:] 

10  cutsize = sum_weight_cutedges in new_gen 
11  if cutsize < min then  
12   best_state = mask 
13   min = cutsize 
14  fi 
15 end 
16  new_gen[:best_state] = gen_1[:best_state] 
17 new_gen[best_state+1:] = gen_2[best_state+1:] 

3.6.2 Crossover with random select 

From 2 individuals we called them as parents (parent1 and 
parent2). We select random positions of gen in parent1 and call is 
index_choose (because the index of gen in individuals is the same). 
Next to, we select random gen of parent1 and parent2 at 
index_choose. As session 3.4.1, we decided to choose max 22 
random positions and process them. The proportion of crossover 
implementing in our population is 40 percent. 

The pseudocode below represents our idea: 

Algorithm 6: Crossover with random select 

Input: 2 parents 

Output: new individual 

0 Program Crossover GALGPP 
1 Begin 
2  Initialization 
3  Num_node is number of nodes 
4 new_gen = clone(parent1) 
5 number_select = max (length_of_gen, 22) 
6 for i from 0 to number_select 
7  index_current = random(length_of_gen) 
8  index_of_partition=random         

(parent1.partition_index, 
parent2.partition_index) 

9  new_gen[index_current].partition_index = 
index_of_partition 
16  end 

3.6.3 Mutation with DG algorithm select 

We use a custom mutation method by choosing at least 3 
positions and the max number of positions up to ORSTUV_OXMU

30
. 

Depend on current population state, we choose new partition for 
that node by calculating the total cost of cut edges and internal 
edges follow DG as we mentioned at Section 3.1 and 3.2 to get the 
best result. This mean find new partition such as weight of edges in 
new partition include 𝑝	 Y𝑔-	(𝑣, 𝑝()Z subtracts the weight of cut 
edges 𝑡-	(𝑣, 𝑝′) is minimum. This optimization is formulated by:  

min𝑔-(𝑣, 𝑝() − 𝑡-(𝑣, 𝑝′)   (3) 

The proportion of mutation implementing in our population is 30 
percent. The pseudocode below represents our idea: 

Algorithm 7: Mutation 

422



A Genetic Algorithm for Large Graph Partitioning Problem SoICT ’19, December 4–6, 2019, Hanoi – Ha Long Bay, Viet Nam 
 

 

Input: 1 parent 

Output: new individual 

0 Program Mutate GALGPP 
1 Begin 
2  Initialization 
3  choosed_gen is a gen chosen for mutation 
4 num_node is the number of nodes 
5 create new_gen 
6 new_gen ← choosed_gen 
7 num ← max of 3 and num_node/10 
8 V ← include random num nodes 
9 for i is choosed nodes in V do 
10  Choose cluster for i such as weight of 

edges include i in new the cluster 
subtracts weight of edges in a different 
cluster 

11  new_gen[i] = new cluster  
12  end 

4 Experimental Evaluation 

4.1 Datasets 
In order to test the performance of our algorithm and compare 

with other algorithms, we used 4 datasets with different sizes. 

The first dataset (Synthetic 1) is a small graph that is generated 
randomly with 9 nodes and 40 edges. The target is to divide graph 
into two partitions. The main purpose of this dataset is comparing 
the result of our GA algorithm implement with backtracking 
algorithm in a limited time. 

The second dataset (Synthetic 2) is a larger random graph with 
999 nodes and 2430 edges. The target of this data set is to divide 
the graph into 428 partitions. It means each partition will have from 
2 to 3 nodes.  

The third dataset is a real-world graph representing a social 
circle provided by Facebook [9]. It is a social network with 4039 
nodes and 88234 edges. We divide into 10 networks. By default, 
we set the cost of an edge is 1.  

The fourth dataset (Arxiv GR-QC) is from Standford called 
General Relativity and Quantum Cosmology collaboration network 
[10]. Arxiv GR-QC (General Relativity and Quantum Cosmology) 
collaboration network is from the e-print arXiv and covers 
scientific collaborations between authors' papers submitted to 
General Relativity and Quantum Cosmology category. If an author 
i co-authored a paper with author j, the graph contains an undirected 
edge from i to j. If the paper is co-authored by k authors this 
generates a completely connected (sub)graph on k nodes. 

4.2 Evaluation Settings 
In our algorithm, the population size is 50. The 

individuals are initialized randomly. The crossover rate in 

each generation is 80% and mutation rate is 30%. Our system 
is run 20 times for each problem instance. The programs 
were run on a machine with Intel CoreI5 2.80Ghz, RAM 8G 
DDR3, SSD 240G and were installed by C++ language. 

4.2 Experimental Results 
Table 1 shows the best costs found by GALGPP and 

other algorithms on four datasets. These problem instances 
could be solved by GALGPP with the result is the best in 4 
algorithms. 

Table 1: Comparison the best result of GALGPP algorithm 
with DG algorithm, GGP algorithm, and BS algorithm 

Data DG GGP BS GALGPP 

Synthetic 1 1401 1078 307 51 
Synthetic 2 19344 228679 116115 65671 
Facebook 20404 86534 79230 7635 
Arxiv GR-

QC 
1395426 170729

2 
722613 475404 

From the results in Table 1, we found that the results of the 
GALGPP are almost always superior to the others. 

  

Figure 1: Comparison the best result of GALGPP algorithm 
with DG algorithm, GGP algorithm and BS algorithm on 

Synthetic 1. 

From the results showing on four figures we found that with 
dataset random (Synthetic 2), the DG algorithm got the best result 
in 4 algorithms, but this algorithm has the worst result with dataset 
random Synthetic 1. But for real-world datasets (Facebook, Arxiv 
GR-QC), the GALGPP algorithm has the best result. 

 

0

200

400

600

800

1000

1200

1400

1600

DG GGP BS GALGPP

Th
e 

Co
st

 o
f C

ut
tin

g 
Ed

ge
s

423



SoICT ’19, December 4–6, 2019, Hanoi – Ha Long Bay, Viet Nam Xuan-Tung Nguyen et al. 
 

 
 

 

Figure 2: Comparison the best result of GALGPP algorithm 
with DG algorithm, GGP algorithm and BS algorithm on 

Synthetic 2. 

 

Figure 3: Comparison the best result of GALGPP algorithm 
with DG algorithm, GGP algorithm and BS algorithm on 

Facebook. 

 

Figure 4: Comparison the best result of GALGPP algorithm 
with DG algorithm, GGP algorithm and BS algorithm on 

Arxiv GR-QC. 

5 Conclusion 
In this paper, we proposed a genetic algorithm for solving the 

Large Graph Partition Problem called GALGPP. We experimented 
on four datasets. Experimental results indicated that our algorithm 
is effective about costs. In the future, we are defining this problem 
with multi-objective and solving it. Besides, we will study solving 
the problem for big graphs which has billion of nodes and edges by 
using the proposed approaches as well as different ones. 
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